New explicit traveling wave solutions for three nonlinear evolution equations
نویسنده
چکیده
Abstract: In this paper, we demonstrate the effectiveness of the (G ′ G )-expansion method by seeking more exact solutions of the SRLW equation, the (2+1) dimensional PKP equation and the (3+1) dimensional potential-YTSF equation. By the method, the two nonlinear evolution equations are separately reduced to non-linear ordinary differential equations (ODE) by using a simple transformation. As a result, the traveling wave solutions are obtained in three arbitrary functions including hyperbolic function solutions, trigonometric function solutions and rational solutions. When the parameters are taken as special values, we also obtain the soliton solutions of the fifth-order Kdv equation. The method appears to be easier and faster by means of a symbolic computation system.
منابع مشابه
New study to construct new solitary wave solutions for generalized sinh- Gordon equation
In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملConstructing Infinite Number of Exact Traveling Wave Solutions of Nonlinear Evolution Equations Via an Extended Tanh–Function Method
Abstract: Two class of fractional type solutions of Riccati equation are constructed from its three known solutions. These fractional type solutions are used to propose an approach for constructing infinite number of exact traveling wave solutions of nonlinear evolution equations by means of the extended tanh–function method. The infinite number of exact traveling wave solutions of the long–sho...
متن کاملExact traveling wave solutions for system of nonlinear evolution equations
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolu...
متن کاملBifurcations of Traveling Wave Solutions for a Class of Nonlinear Evolution Equations
By using the bifurcation theory of planar dynamical systems to a class of nonlinear evolution equations, the existence of traveling wave solutions is showed. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given. Explicit exact parametric representations of some traveling wave solutions are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 217 شماره
صفحات -
تاریخ انتشار 2010